ALP-4000 MULTI-FUNCTION PROTECTION RELAY

At the cutting edge of technology, the new ALP-4000 multi-function relay is a smart system that can be used to protect transformers and monitor critical system data. Algorithm performance paired with rugged design make this relay powerful, modern and flexible.

MAIN CHARACTERISTICS AND ADVANTAGES

- Platform built with the most cutting-edge technologies, resulting in very high processing and storage capacity
- SECURE blocking adapted to ultrasaturation phenomenon of modern transformers
- Fast transformer differential restrained action as low as 1,4 cycle to keep your transformer safe and avoid false tripping under magnetization current
- Better precision of analog readings
- One of the highest sampling rate of the industry, enabling precise recording of fault and analysis
- Secure, rugged and reliable protection relay, in compliance with the latest utility standards
- Protection, automation, metering and monitoring functions built into a single product
- User-friendly interfaces and software, easing operation, configuration, start-up and engineering
- Scalable solution for the detection and treatment of non-conventional electrical phenomena
- Up to six three-phase current inputs and two three-phase voltage inputs

APPLICATION OF THE ALP-4000

- Used primarily for protection of transformer in transmission and generation stations
- Used to monitor current magnitude and angle, harmonics and symmetrical components through a secured web interface
- Used as a multi-function relay where logic and protection functions are necessary

4000

SERIES

ALP-4000 FUNCTION OVERVIEW

I₁ M $\begin{array}{c} \text{REF} - 50 - \frac{50}{\text{BF}} - 50\text{N} - \frac{51}{\text{DT}} - \frac{51\text{N}}{\text{DT}} - \frac{51}{\text{T}} - \frac{51\text{N}}{\text{T}} - \frac{57}{\text{C}} - \frac{87\text{N}}{\text{N}} \end{array}$ l₂ ∰ $\begin{array}{c} \mathsf{REF} & 50 & -\frac{50}{\mathsf{BF}} & 50\mathsf{N} & -\frac{51}{\mathsf{DT}} & \frac{51\mathsf{N}}{\mathsf{DT}} & -\frac{51}{\mathsf{TT}} & -\frac{51\mathsf{N}}{\mathsf{TT}} & 67 & -87\mathsf{N} \end{array}$ l₃ ∰ 50 - 50 - 50N - 51 - 51N - 51 - 51N - 67 - 87N REF 14 M 50 - 50 - 50 N - 51 - 51 N - 51 - 51 N - 51 67)-REF)ь М 50 - 50 BF - 50N - 51 DT - 51N - 51 DT - 51N - 51 DT - 51N -67 REF (87 N I₆ $50 - {50 \atop BF} - {50N} - {51 \atop DT} - {51N \atop DT} - {51 \atop TT} - {51N \atop$ 67 REF V_1 27 - 59 - 81 - 81R V_2 (81)-81R 24 (27) (59)

	Programmable inputs and outputs
	Programmable logic
	Metering
)	Chronological event recorder
	Oscillograph
	Local and distant HMI
	Programmable buttons and LEDs
	Ethernet
	DNP3/CEI 61850*
	IRIG-B
	Autodiagnostics
	* Available soon with a software update

Main Protection functions		
IEEE C37.2 Number	Description	
24	Overfluxing	
27	Undervoltage function	
50BF	Breaker failure	
50/50N	Instantaneous overcurrent function	
51/51N DT	Definite time overcurrent function	
51/51N IT	Inverse time overcurrent function	
59	Overvoltage function	
67	Directional overcurrent	
81R	Frequency Rate of change function	
81	Frequency Under/Over function	
87R	Differential restrained function	
87U	Differential unrestrained function	
*87N (REF)	Restricted earth fault	
Voltage peak detector (DCT)	Peak voltage raw data function	

87- TRANSFORMER DIFFERENTIAL PROTECTION

The ALP-4000 provides the most commonly used transformer differential protection functions: percentage restrained differential protection (87R) and unrestrained differential protection (87U). Up to five three-phase current inputs can be used by these functions. Each input's magnitude and phase is independently compensated.

24-OVERFLUXING PROTECTION

V/Hz surveillance is done using predefined or user defined curves. The overfluxing of generator transformer can be dangerous while causing winding overheating and powerful magnetotrictive forces.

27/59- UNDERVOLTAGE/OVERVOLTAGE PROTECTION

The ALP-4000 also monitors voltage levels via undervoltage (27) and overvoltage functions (59).

50/51- OVERCURRENT PROTECTION

The ALP-4000 also provides overcurrent protection for the transformer either via instantaneous trip (50/50N), definite time (51 DT/51N DT) and/or inverse time functions (51 IT/51N IT). These functions work simultaneously.

81- FREQUENCY PROTECTION

Under/over-frequency (81) and rate-of-change-of-frequency functions (81R) are available to protect the transformer during network frequency deviations.

67- DIRECTIONAL OVERCURRENT

Directional overcurrent allows the isolation of faulted zone depending on the flow and magnitude of the current.

*87N (REF)- RESTRICTED EARTH FAULT

Increased sensibility of earth fault detection inside the protection zone is possible by using the restricted earth fault function.

*50BF- BREAKER FAILURE

Provides additional protection in case of a breaker failure to isolate the fault. Building the breaker failure is simple using logic equations and overcurrent elements.

VOLTAGE PEAK DETECTOR (DCT)

The ALP-4000 includes a voltage peak detection function which analyzes sampled raw values before filtering. This function identifies non-conventional electrical phenomena which are undetected by traditional protection functions.

PROGRAMMABLE INPUTS/OUTPUTS

Outputs of the ALP-4000 can be configured individually to operate from the value of any of the relay's binary points (e.g. output of a function, timer, flip-flop or latch, logic equation etc.). Similarly, digital inputs of the relay can be used in any element using a binary point as an input (e.g. a logic equation).

HIGH-SPEED & HIGH POWER OUTPUTS

The ALP-4000 features 8 high-speed and high power outputs based on a parallel combination of optocoupled transistors and mechanical relays.

METERING AND MONITORING

Real-time measurements are taken from raw voltages and currents with a sampling rate of 7,680 Hz. The relay can be configured to track the frequency of the network and to adjust its sampling rate to 128 samples per network cycle.

PROGRAMMABLE LOGIC CONTROLLERS AND EQUATIONS

Up to 50 logic equations can be configured. Flip-flops or latches, timers and logic functions are available to build complex equations.

RUNTIME SANITY CHECK

Runtime sanity check continuously verifies system integrity in order to effectively detect any hardware malfunction in the device.

EXPANDABILITY

With its flexible and modular architecture, the ALP-4000 is the perfect solution for detecting and treating non-conventional electrical phenomena.

OSCILLOGRAPHIC RECORDER

The ALP-4000 can support the configuration of 10 oscillographic recorders. Oscillographic files including a maximum duration of 5 seconds of data are stored using IEEE C37.111 format, either in version 1999 or 2013 according to the user's preferences. The increased storage of the ALP enables the user to store raw data at one of the highest sampling rate of the industry (128 samples/cycle), enabling better analysis of the faulted equipment.

SECURE ACCESS

Three user levels are available to secure access to the relay interfaces.

SEQUENCE OF EVENTS RECORDER

Up to 1,000 different kinds of events (Protection, Security, Configuration and Maintenance) can be recorded in the ALP-4000. Each event may provide details of the system status at the time of the event.

*DNP3 SECURE AUTHENTICATION

DNP3 protocol is now available with "DNP3 Secure Authentication" ensuring the relay communicates with an authenticated user before giving access to critical functions. This feature helps meet substation cybersecurity requirements.

*61850 GOOSE MESSAGES

Transmit and receive GOOSE (Generic Object Oriented Substation Events) messages over the substation Ethernet LANs. GOOSE messaging will reduce the amount of hard wiring between devices in the substation while allowing low-latency, real-time transmission of events.

*Soon available upon firmware update

SECURED WEB INTERFACE

APPLICATION EXAMPLE OF ALP4000

TRANSFORMER DIFFERENTIAL PROTECTION

Transformers are a crucial piece of equipment in an electrical network. They suffer electrically and mechanically from stresses generated by many types of events such as external short circuits, internal faults, grid perturbations and thermal stresses. As current flow through a transformer, the differential between currents at the input and output gives indication that the unit must be quickly removed from the grid. Meanwhile, returning a transformer back on the grid requires analysis of the current harmonic content to avoid false tripping under inrush conditions resulting in a differential current greater than the protection settings. The ALP-4000 uses a dual slope percent differential function to protect the transformer. Inrush conditions are detected using either one of two mechanisms. First is a standard algorithm monitoring the second and fourth harmonics. Second is a SECURE mode using a decision tree and lowering the second harmonic threshold for proper transformer inrush protection of newest transformers encountering ultrasaturation of the core. The relay also provides restraint in overexcitation conditions by monitoring the fifth harmonic. The friendly user interface makes the implementation of the protection settings very easy.

VOLTAGE PEAK DETECTOR (DCT)

In some particular electrical network configurations, various event may create surge and overvoltage condition. Users of these electrical grids can monitor these overvoltage conditions to isolate series compensation lines, to trigger specific regulating devices and to manage islanding conditions more efficiently.

Typically, voltage readings in a protective relay is averaged and conditioned into RMS values before performing protection functions. Faster response to non-conventional electric phenomena is achieved by a Voltage Peak Detector algorithm that uses each raw sample of data as input.

The Voltage Peak Detector function is easily enabled in the configurator by setting a peak voltage threshold, a minimum number of samples per peak and a count of peaks per cycle. The function can trip whether a consecutive number of cycles are found to be active, or if some cycles are found active in a sliding window. The friendly user interface gives access to 6 instances of the Voltage Peak Detector function.

TRANSFORMER DIFFERENTIAL (87U / R)			
Current inputs	2 to 6 inputs		
Tap range:	0.7 – 174, 0.1 steps		
RESTRAINED (87 R)			
Pickup range	0.1 – 1 p.u., 0.001 p.u. steps		
Slopes 1 and 2 range :	5 – 100%, 0.1% steps		
Accuracy :	±5%, ±0.03 p.u. minimum		
2e 4e 5e harmonic pickup range:	5 – 100%, 0.1% steps		
Accuracy :	±5%, ±0.03 p.u. minimum		
Minimum pickup time :	1.4 cycles		
Maximum pickup time :	1.75 cycles		
Average pickup time :	1.5 cycles		
UNRESTRAINED (87 U)			
Pickup range	5 – 20 p.u., 0.001 p.u. range		
Accuracy :	±5%, min de ±0.03 p.u.		
Minimum pickup time :	0.6 cycle		
Maximum pickup time :	1.6 cycles		
Average pickup time :	1.1 cycles		

1 – 300 V, 0.001 V steps ±3%, ±2.1 V minimum

Total RMS < 1.9 cycles

0 - 100 s, 1 ms steps $\pm 0.1\%, \pm 0.125 \text{ cycle minimum}$ 0 - 100 s, 1 ms steps

Fundamental RMS : < 1 cycle Total RMS < 2.5 cycles Fundamental RMS : < 1.75 cycles

±0.1%, ±0.125 cycle minimum

VOLTAGE (27 / 59)

Accuracy (steady state) :

Pickup

Pickup time

Pickup time (0.8 x pickup) Operate time

Accuracy : Hold time Accuracy :

(0.1 x pickup)

Pickup	1 A Nominal 5 A Nominal	
	0.05 – 20 A 0.25 – 100 A	
Range :	0.1 – 100 A secondary, 0.001 A steps	
Hysteresis :	98% of pickup	
Accuracy (steady state) :	±3%, ±30 mA minimum	
Transient overreach :	< 2%, up to X/R = 240	
Pickup time	Total RMS : < 1.75 cycles	
(10 x pickup)	Fundamental RMS : < 1 cycle	
Pickup time	Total RMS : < 2.5 cycles	
(1.2 x pickup)	Fundamental RMS : < 2 cycles	
Hold time	0 – 100 s, 1 ms steps	
Accuracy :	±0.1%, ±0.125 cycle minimum	
Definite time (51 DT / 51N DT)		
Operate time	0 – 100 s, 1 ms steps	
Accuracy :	±0.1%, ±0.125 cycle minimum	
Reset time	0 – 100 s, 1 ms steps	
Accuracy :	±0.1%, ±0.125 cycle minimum	
Inverse time (51 IT / 51N IT)		
	IEC Inverse	
	IEC Very inverse	
	IEC Extremely inverse	
Curve shapes	IEC Long-Time Inverse	
	IEEE Moderately inverse	
	IEEE Very inverse	
	IEEE Extremely inverse	
Curve multipliers	IEC: 0.05 - 1.1, 0.001 steps	
	IEEE : 0.1 – 3.0, 0.001 steps	
Accuracy (operate)	±1%, ±1.5 cycles minimum	
Accuracy (reset)	±1%, ±1.5 cycles minimum	
Overshoot time	< 1 cycle	
Response to time varying	+3% +4.5 cycles minimum	
value of measured current		

OVERCURRENT (50 / 50N/ 51 DT / 51N DT/ 51 IT / 51N IT)

MAIN SPECIFICATIONS	
AC current inputs	6 three-phase groups
AC voltage inputs	2 three-phase groups
DC digital inputs	16
Digital outputs	16
High-speed, high-power digital outputs	8
Assignable buttons	8
Programmable LED	16
Synchronization	IRIG-B modulated / unmoduated
Interface	Secure web / Graphical LCD display
Communications	HTTPS, DNP3 (with Secure Authentification)
Power supply	105 Vdc – 140 Vdc
Fower supply	85 Vac – 265 Vac @ 60Hz
Typical power consumption	23 W (dc) / 38 W (ac)
Maximum power consumption	30 W (dc) / 50 W (ac)
Independent inputs/outputs	Dielectric strength between channels 2800 Vdc (1 min)
Sampling	128 samples / cycle

FREQUENCY (81/ 81R)			
UNDERFREQUENCY AND OVER	FREQUENCY (81)		
Pickup	40 – 75 Hz, 0.001 Hz steps		
Accuracy (steady state) :	±0.04%, ±25 mHz minimum		
Maximum pickup time	6 cycles average, 12 cycles max		
Operate time	0 – 900 s, 1 ms steps		
Accuracy :	±0.1%, ±0.125 cycle minimum		
FREQUENCY RATE-OF-CHANGE (81R)			
Pickup	±0.1 – ± 10 Hz/s, 0.01 Hz steps		
Accuracy (steady state) :	±3%, ±5 mHz/s minimum		

VOLTAGE PEAK DETECTOR		
Pickup	0.250 – 425 V, 0.001 V steps	
Accuracy :	±0.1%, ± 10 mV minimum	
Hold time	0 à 100 s Per step of 1 ms	
Accuracy :	±0,1%, ±0,125 cycle minimum	

METERING		
Current		
RMS Value :	0,5-100A :0.2%±10mA	
Phasor magnitude :	0,5-100A :0.2%±10mA	
Phasor angle :	0,5-100A : ±1 °	
Symetrical comp. magnitude :	0,5-100A :0.2%±10mA	
Symetrical comp. angle :	0,5-100A : ±1 °	
Voltage		
RMS Value :	5-300V :0.1%±12mV	
Phasor magnitude :	5-300V :0.1%±12mV	
Phasor angle :	5-300V : ±1 °	
Symetrical comp. magnitude :	5-300V :0.1%±12mV	
Symetrical comp. angle :	0,1-100A : ±1°	
Frequency	60 Hz nominal	
Accuracy :	±0,001 Hz (at 60 Hz)	
Measuring range :	30 to 90 Hz	
Tracking range:	40 to 75 Hz	

ENVIRONMENTAL CONDITIONS			
Dry heat – Functional and storage	CEI 60068-2-2 :2007 Bd and Rb	+85℃ 16 hours	
Cold – Functional and storage	CEI 60068-2-1 :1990 – Ab and Ab	-40 <i>°</i> C 16 hours	
Cyclic temperatures	CEI 60068-2-14 :2009 Nb	-40 ℃ to 85 ℃ 5 cycles	
Damp heat, continuous	CEI 60068-2-78 :2012 Cab	+40°C, 240 hours 93% relative humidity	
Damp heat, cyclic	CEI 60068-2-30 :2005 Dd	25 ℃ to 55 ℃ 8 cycles 95% relative humidity	
Behavior under vibrations and endurance (sinusoidal)	60255-21-1 :1998	Class 1	
Response to shocks, resistance to shocks and vibrations	60255-21-2 :1998	Class 1	
Seismic tests	60255-21-3 :1993	Class 2	
Enclosure protection	IP3X		
Surge category	11		
Pollution degree	2		
Equipment class	1		
Maximum elevation < 2000 m			
Maximum relative humidity	Maximum relative humidity 95% non-condensing		
Operating temperature	-40 ℃ to 70 ℃		

SECURITY			
Impulse voltage	60255-27 :2013	5 kV, 0,5J	
Dielectric voltage	60255-27 :2013	2800 Vdc Copper ethernet port 2250Vdc	
Insulation resistance	60255-27 :2013	 > 100 MΩ after damp heat test (CEI 60068-2-78) 	
Protective bonding resistance	60255-27 :2013	< 0,03 Ω	
Thermal short time	60255-27 :2013	4*In (20 A) continuous 100*In (500A) for 1 s 1250Ac for1 cycle	

ELECTROMAG COMPATIBILIT	NETIC Y	
Radiated emission	CISPR 11/CISPR 22	Classe A
Conducted emission	CISPR 22 : 2008	Classe A
Electrostatic discharge immunity	CEI 6100-4-2 :2008 Niveau 4	±15 kV dans air ±8 kV au contact
Radiated electromagnetic field immunity	CEI 61000-4-3 :2006 A1 :2008 A2 :2010 IEEE C37.90.2 :2004 20 V/m	20V/m
Electrical fast transient/burst immunity	CEI 61000-4-4 :2004 IEEE C37.90.1	±4kV
Surge immunity	CEI 61000-4-5 :2005 Niveau 3 et 4	±4 kV L-PE ±2kV L-L ALIM : ±2 kV L-PE ±1 kV L-L
Immunity to conducted disturbances	CEI 61000-4-6 :2008	20V
Power frequency magnetic field immunity	CEI 61000-4-8-2009	100 A/m for 60s 1000 A/m for 3s (50Hz and 60Hz)
Pulsed magnetic field immunity	CEI 61000-4-9 :1993 A1 :2000 Niveau 5	1000 A/m
Damped oscillatory magnetic field immunity	CEI 61000-4-10 :1993 A1 : 2000 Niveau 5	100 A/m for 2s (0.1MHz and 1MHz)
Voltage dips immunity	CEI 61000-4-11 :2004 CEI 61000-4-29 :2000	DC Supply 40% for 200 ms 70% for 500 ms
Voltage interruptions on power supply voltage immunity	CEI 61000-4-11 :2004 CEI 61000-4-29 :2009	DC Supply 100% short-circuit for 5s 100% open-circuit for 5s
Gradual shut- down/start-ups	CEI 60255-26 :2013	60s ramp
Immunity at the power frequency on the DC inputs	CEI 61000-4-16 :2002	Digital input : 300 Vrms L-PE for 10s 60Hz 150 Vrms L-L for 10s 60Hz
DC Ripple immunity at power input	CEI 61000-4-17:2009	25%
Damped oscillatory wave immunity	CEI 61000-4-18:2006 A1:2011	2.5kV L-PE 1kV L-L IRIG-B : 1kV L-PE 0.5kV L-L 100kHz et 1MHz
Surge Withstand	IEEE C37.90.1:2002	2.5kV L-PE 2.5kV L-I

AC CURRENT INPUTS		
Nominal current	1 A or 5 A	
Continuous maximum current	20 A	
Measurable maximum current	40 A (1 A nominal) 200 A (5A nominal)	
Maximum current (1 sec thermal)	500 A	
Maximum current (1 cycle thermal)	1250 Ac (peak)	
Frequency response (-3dB)	1500 Hz	
Burden	< 0.15 VA	
Individual imputs	Inter-circuit isolation of 2800Vdc for 1 min	

PHYSICAL LAYOUT AND DIMENSION

CONTACT :

Gentec Inc. 2625 Ave Dalton, Qc Canada, G1P 3S9 Phone: +1-418-651-8000 Fax : +1-418-651-6695 Email: <u>information@gentec.ca</u> www.gentec.ca

AC VOLTAGE INPUT	
Nominal voltage	70 V
Continuous maximum voltage	250 V
Measurable maximum voltage	300 V
Maximum voltage (10 sec thermal)	350 V
Frequency	40 – 75 Hz
Accuracy	5-300 V:0,1% ±10mV
Frequency response (-3dB)	1500 Hz
Burden	< 0,15 VA
Individual imputs	Inter-circuit isolation of 2800Vdc for 1 min

DC DIGITAL INPUTS

Operating nominal voltage	125 Vdc
Operation maximum voltage	145 Vdc
Minimum pickup voltage	102 Vdc
Nominal cutoff voltage	85 Vdc
Input impedance	30 kΩ
Input consumption	0,5 W
Individual imputs	Inter-circuit isolation of 2800Vdc for 1
	min

DIGITAL OUTPUTS	
Operating nominal voltage	125 Vdc
Operation maximum voltage	160 Vdc
Minimum pickup voltage	20 Vdc
Continuous maximum current	5 A
Nominal closure power	30 A @ 125 Vdc
Nominal resistive cutoff power	0,3 A @ 125 Vdc
Nominal cutoff power	0,3 A @ 125 Vdc
	(L/R = 40 ms)
Pickup time	< 9 ms
Cutoff time	< 25 ms
Electrical operations	>1 E 6 @125Vdc, I=0.3A, L/R=40ms
Individual outputs	Inter-circuit isolation of 2800Vdc for 1 min

HIGH-SPEED HIGH-POWER DIGITAL OUTPUTS		
Operating nominal voltage	125 Vdc	
Operation maximum voltage	160 Vdc	
Minimum pickup voltage	20 Vdc	
Continuous maximum current	10 A	
Nominal closure power	30 A @ 125 Vdc	
Nominal resistive cutoff power	10 A @ 125 Vdc	
Nominal cutoff power	10 A @ 125 Vdc (L/R = 40 ms)	
Pickup time	< 2 µs	
Cutoff time	< 25 ms	
Electrical operations	>50 000@125Vdc, I=10A, L/R=40ms	
Individual outputs	Inter-circuit isolation of 2800Vdc for 1 min	

Since 1959, Gentec is specialized in developing custom cutting edge technology electronic and electrical products. Our sustained effort to exceed utility requirements is one of the reasons why our ingenious and robust solutions are renowned around the world. Constantly look for getting ahead in the electrical industry trend.

Gentec is the perfect partner for you!

