ALP-4000 MULTI-FUNCTION PROTECTION RELAY

At the cutting edge of technology, the new ALP-4000 multi-function relay is a smart system that can be used to protect transformers and monitor critical system data. Algorithm performance paired with rugged design make this relay powerful, modern and flexible.

MAIN CHARACTERISTICS AND ADVANTAGES

- Platform built with the most cutting-edge technologies, resulting in very high processing and storage capacity
- SECURE blocking adapted to ultrasaturation phenomenon of modern transformers
- Fast transformer differential restrained action as low as 1,4 cycle to keep your transformer safe and avoid false tripping under magnetization current
- Better precision of analog readings
- One of the highest sampling rate of the industry, enabling precise recording of fault and analysis
- Secure, rugged and reliable protection relay, in compliance with the latest utility standards
- Protection, automation, metering and monitoring functions built into a single product
- User-friendly interfaces and software, easing operation, configuration, start-up and engineering
- Scalable solution for the detection and treatment of non-conventional electrical phenomena
- Up to six three-phase current inputs and two three-phase voltage inputs

APPLICATION OF THE ALP-4000

- Used primarily for protection of transformer in transmission and generation stations
- Used to monitor current magnitude and angle, harmonics and symmetrical components through a secured web interface
- Used as a multi-function relay where logic and protection functions are necessary
87- TRANSFORMER DIFFERENTIAL PROTECTION
The ALP-4000 provides the most commonly used transformer differential protection functions: percentage restrained differential protection (87R) and unrestrained differential protection (87U). Up to five three-phase current inputs can be used by these functions. Each input’s magnitude and phase is independently compensated.

24- OVERFLUXING PROTECTION
V/Hz surveillance is done using predefined or user defined curves. The overfluxing of generator transformer can be dangerous while causing winding overheating and powerful magnetotriective forces.

27/59- UNDERVOLTAGE/OVERVOLTAGE PROTECTION
The ALP-4000 also monitors voltage levels via undervoltage (27) and overvoltage functions (59).

50/50N- OVERCURRENT PROTECTION
The ALP-4000 also provides overcurrent protection for the transformer either via instantaneous trip (50/50N), definite time (51 DT/51N DT) and/or inverse time functions (51 IT/51N IT). These functions work simultaneously.

81- FREQUENCY PROTECTION
Under/over-frequency (81) and rate-of-change-of-frequency functions (81R) are available to protect the transformer during network frequency deviations.

67- DIRECTIONAL OVERCURRENT
Directional overcurrent allows the isolation of faulted zone depending on the flow and magnitude of the current.

87N (REF)- RESTRICTED EARTH FAULT
Increased sensibility of earth fault detection inside the protection zone is possible by using the restricted earth fault function.

*50BF- BREAKER FAILURE
Provides additional protection in case of a breaker failure to isolate the fault. Building the breaker failure is simple using logic equations and overcurrent elements.

VOLTAGE PEAK DETECTOR (DCT)
The ALP-4000 includes a voltage peak detection function which analyzes sampled raw values before filtering. This function identifies non-conventional electrical phenomena which are undetected by traditional protection functions.

PROGRAMMABLE INPUTS/OUTPUTS
Outputs of the ALP-4000 can be configured individually to operate from the value of any of the relay’s binary points (e.g. output of a function, timer, flip-flop or latch, logic equation etc.). Similarly, digital inputs of the relay can be used in any element using a binary point as an input (e.g. a logic equation).

HIGH-SPEED & HIGH POWER OUTPUTS
The ALP-4000 features 8 high-speed and high power outputs based on a parallel combination of optocoupled transistors and mechanical relays.

METERING AND MONITORING
Real-time measurements are taken from raw voltages and currents with a sampling rate of 7,680 Hz. The relay can be configured to track the frequency of the network and to adjust its sampling rate to 128 samples per network cycle.

PROGRAMMABLE LOGIC CONTROLLERS AND EQUATIONS
Up to 50 logic equations can be configured. Flip-flops or latches, timers and logic functions are available to build complex equations.

RUNTIME SANITY CHECK
Runtime sanity check continuously verifies system integrity in order to effectively detect any hardware malfunction in the device.
EXPANDABILITY
With its flexible and modular architecture, the ALP-4000 is the perfect solution for detecting and treating non-conventional electrical phenomena.

SEQUENCE OF EVENTS RECORDER
Up to 1,000 different kinds of events (Protection, Security, Configuration and Maintenance) can be recorded in the ALP-4000. Each event may provide details of the system status at the time of the event.

Oscillographic Recorder
The ALP-4000 can support the configuration of 10 oscillographic recorders. Oscillographic files including a maximum duration of 5 seconds of data are stored using IEEE C37.111 format, either in version 1999 or 2013 according to the user’s preferences. The increased storage of the ALP enables the user to store raw data at one of the highest sampling rate of the industry (128 samples/cycle), enabling better analysis of the faulted equipment.

* DNP3 SECURE AUTHENTICATION
DNP3 protocol is now available with “DNP3 Secure Authentication” ensuring the relay communicates with an authenticated user before giving access to critical functions. This feature helps meet substation cybersecurity requirements.

*61850 GOOSE MESSAGES
Transmit and receive GOOSE (Generic Object Oriented Substation Events) messages over the substation Ethernet LANs. GOOSE messaging will reduce the amount of hard wiring between devices in the substation while allowing low-latency, real-time transmission of events.

SECURE ACCESS
Three user levels are available to secure access to the relay interfaces.

SECURED WEB INTERFACE

*Soon available upon firmware update
APPLICATION EXAMPLE OF ALP4000

TRANSFORMER DIFFERENTIAL PROTECTION

Transformers are a crucial piece of equipment in an electrical network. They suffer electrically and mechanically from stresses generated by many types of events such as external short circuits, internal faults, grid perturbations and thermal stresses. As current flow through a transformer, the differential between currents at the input and output gives indication that the unit must be quickly removed from the grid. Meanwhile, returning a transformer back on the grid requires analysis of the current harmonic content to avoid false tripping under inrush conditions resulting in a differential current greater than the protection settings.

The ALP-4000 uses a dual slope percent differential function to protect the transformer. Inrush conditions are detected using either one of two mechanisms. First is a standard algorithm monitoring the second and fourth harmonics. Second is a SECURE mode using a decision tree and lowering the second harmonic threshold for proper transformer inrush protection of newest transformers encountering ultrasaturation of the core. The relay also provides restraint in overexcitation conditions by monitoring the fifth harmonic. The friendly user interface makes the implementation of the protection settings very easy.

VOLTAGE PEAK DETECTOR (DCT)

In some particular electrical network configurations, various event may create surge and overvoltage condition. Users of these electrical grids can monitor these overvoltage conditions to isolate series compensation lines, to trigger specific regulating devices and to manage islanding conditions more efficiently.

Typically, voltage readings in a protective relay is averaged and conditioned into RMS values before performing protection functions. Faster response to non-conventional electric phenomena is achieved by a Voltage Peak Detector algorithm that uses each raw sample of data as input.

The Voltage Peak Detector function is easily enabled in the configurator by setting a peak voltage threshold, a minimum number of samples per peak and a count of peaks per cycle. The function can trip whether a consecutive number of cycles are found to be active, or if some cycles are found active in a sliding window. The friendly user interface gives access to 6 instances of the Voltage Peak Detector function.

7680Hz

Simple and efficient configuration of differential protection including SECURE blocking for safe and reliable protection of newest transformers.
Transformer Differential (87U / R)

<table>
<thead>
<tr>
<th>Current inputs</th>
<th>2 to 6 inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tap range:</td>
<td>0.7 – 174, 0.1 steps</td>
</tr>
</tbody>
</table>

Restrained (87R)

Pickup range	0.1 – 1 p.u., 0.001 p.u. steps
Slopes 1 and 2 range:	5 – 100%, 0.1% steps
Accuracy:	±5%, ±0.03 p.u. minimum

2nd – 5th harmonic pickup range:	5 – 100%, 0.1% steps
Accuracy:	±5%, ±0.03 p.u. minimum
Minimum pickup time:	1.4 cycles
Maximum pickup time:	1.75 cycles
Average pickup time:	1.5 cycles

Unrestrained (87U)

Pickup range	5 – 20 p.u., 0.001 p.u. range
Accuracy:	+5%, min de 5% p.u.
Minimum pickup time:	0.6 cycle
Maximum pickup time:	1.6 cycles
Average pickup time:	1.1 cycles

Voltage (27 / 59)

Pickup

| **Accuracy (steady state):** | 1 – 300 V, 0.001 V steps |
| **Accuracy:** | ±3%, ±2.1 V minimum |

Pickup time (0.1 x pickup):	Total RMS < 1.9 cycles
Pickup time (0.8 x pickup):	Total RMS < 2.5 cycles
Operate time:	0 – 100 s, 1 ms steps
Accuracy:	±0.1%, ±0.125 cycle minimum
Hold time:	0 – 100 s, 1 ms steps
Accuracy:	±0.1%, ±0.125 cycle minimum

Frequency (81 / 81R)

Underfrequency and Overfrequency (81)

Pickup	40 – 75 Hz, 0.001 Hz steps
Accuracy (steady state):	±0.04%, ±25 mHz minimum
Maximum pickup time:	6 cycles average, 12 cycles max

Frequency Rate-of-Change (81R)

| **Pickup** | ±0.1 – ± 10 Hz/s, 0.01 Hz steps |
| **Accuracy (steady state):** | ±3%, ±5 mHz/s minimum |

Voltage Peak Detector

Pickup	0.250 – 425 V, 0.001 V steps
Accuracy:	±0.1%, ±10 mV minimum
Hold time:	0 à 100 s per step of 1 ms
Accuracy:	±0.1%, ±0.125 cycle minimum

Overcurrent (50 / 50N / 51 DT / 51N DT / 51 IT / 51N IT)

Pickup

1 A Nominal	0.05 – 20 A	5 A Nominal	0.25 – 100 A
Range:	0.1 – 100 A secondary, 0.001 A steps		
Hysteresis:	98% of pickup		
Accuracy (steady state):	±3%, ±30 mA minimum		
Transient overreach:	< 2%, up to X/R = 240		

Pickup time

| **(10 x pickup):** | Total RMS < 1.75 cycles |
| **(1.2 x pickup):** | Total RMS < 2.5 cycles |

Hold time

| **Definite time (51 DT / 51N DT):** | 0 – 100 s, 1 ms steps |
| **Accuracy:** | ±0.1%, ±0.125 cycle minimum |

Operate time

| **Accuracy:** | ±0.1%, ±0.125 cycle minimum |

Reset time

| **Accuracy:** | ±0.1%, ±0.125 cycle minimum |

Inverse time (51 IT / 51N IT)

Curve shapes

- IEC Inverse
- IEC Very inverse
- IEC Extremely inverse
- IEC Long-Time Inverse
- IEEE Moderately inverse
- IEEE Very inverse
- IEEE Extremely inverse

Curve multipliers

- IEC: 0.05 – 1.1, 0.001 steps
- IEEE: 0.1 – 3.0, 0.001 steps

Accuracy (operate)

| **Accuracy:** | ±1%, ±1.5 cycles minimum |

Accuracy (reset)

| **Accuracy:** | ±1%, ±1.5 cycles minimum |

Overshoot time

| **< 1 cycle** |

Response to time varying value of measured current

| **±3%, ±4.5 cycles minimum** |

Main Specifications

AC current inputs

| **6 three-phase groups** |

AC voltage inputs

| **2 three-phase groups** |

DC digital inputs

| **16** |

Digital outputs

| **16** |

High-speed, high-power digital outputs

| **8** |

Assignable buttons

| **8** |

Programmable LED

| **16** |

Synchronization

- IRIG-B modulated / unmodulated
- Secure web / Graphical LCD display

Communications

- HTTPS, DNP3 (with Secure Authentication)

Power supply

- 105 Vdc – 140 Vdc
- 85 Vac – 265 Vac @ 60Hz

Typical power consumption

- 23 W (dc) / 38 W (ac)

Maximum power consumption

- 30 W (dc) / 50 W (ac)

Independent inputs/outputs

- Dielectric strength between channels 2800 Vdc (1 min)

Sampling

- 128 samples / cycle
Electromagnetic Compatibility

Radiated emission

- CISPR 11/CISPR 22 Classe A
- Radiated electromagnetic field immunity

Conducted emission

- CISPR 22 : 2008 Classe A
- Electrical fast transient/burst immunity
 - CEI 61000-4-4 :2004 IEEE C37.90.1 ±4kV

Electrostatic discharge immunity

- CEI 6100-4-2 :2008 Niveau 4
 - ±15 kV dans air
 - ±8 kV au contact

Radiated electromagnetic field immunity

Electrostatic discharge immunity

- CEI 6100-4-2 :2008 Niveau 4
 - ±15 kV dans air
 - ±8 kV au contact

Surge immunity

- CEI 61000-4-4 :2004 IEEE C37.90.1 ±4kV

Surge immunity

- CEI 61000-4-4 :2004 IEEE C37.90.1 ±4kV

Power frequency magnetic field immunity

- CEI 61000-4-8-2009
 - 100 A/m for 60s
 - 1000 A/m for 3s

DC Supply

- 40% for 200 ms
- 70% for 500 ms

Inter-circuit isolation

- Inter-circuit isolation of 2800Vdc for 1 min

Metering

Current

- RMS Value : 0.5-100A : 0.2%±10mA
- Phasor magnitude : 0.5-100A : 0.2%±10mA
- Phasor angle : 0.5-100A : ±1°
- Symmetrical comp. magnitude : 0.5-100A : 0.2%±10mA
- Symmetrical comp. angle : 0.5-100A : ±1°

Voltage

- RMS Value : 5-300V : 0.1%±12mV
- Phasor magnitude : 5-300V : 0.1%±12mV
- Phasor angle : 5-300V : ±1°
- Symmetrical comp. magnitude : 5-300V : 0.1%±12mV
- Symmetrical comp. angle : 0.1-100A : ±1°

Frequency

- Accuracy : ±0,001 Hz (at 60 Hz)
- Measuring range : 30 to 90 Hz
- Tracking range : 40 to 75 Hz

EMI Environment

Dry heat – Functional and storage

- CEI 60068-2-2 :2007 Bd and Rb +85° C 16 hours

Cold – Functional and storage

- CEI 60068-2-1 :1990 – Ab and Ab -40° C 16 hours

Cyclic temperatures

- CEI 60068-2-14 :2009 Nb -40° C to 85° C 5 cycles

Damp heat, continuous

- CEI 60068-2-78 :2012 Cab +40°C, 240 hours 93% relative humidity

Damp heat, cyclic

- CEI 60068-2-30 :2005 Dd 25°C to 55°C 8 cycles 95% relative humidity

Behavior under vibrations and endurance (sinusoidal)

- 60255-21-1 :1998 Class 1

Response to shocks, resistance to shocks and vibrations

- 60255-21-2 :1998 Class 1

Seismic tests

- 60255-21-3 :1993 Class 2

Enclosure protection

- IP3X

Surge category

- II

Pollution degree

- 2

Equipment class

- 1

Maximum elevation

- < 2000 m

Maximum relative humidity

- 95% non-condensing

Operating temperature

- -40°C to 70°C

Security

Impulse voltage

- 60255-27 :2013 5 kV, 0.5J

Dielectric voltage

- 60255-27 :2013 2800 Vdc

Insulation resistance

- 60255-27 :2013 > 100 MΩ after damp heat test (CEI 6068-2-78)

Protective bonding resistance

- 60255-27 :2013 < 0.03 Ω

Thermal short time

- 60255-27 :2013 4"ln (20 A) continuous 100"ln (500A) for 1 s 1250Ac for1 cycle

AC Current Inputs

Nominal current

- 1 A or 5 A

Continuous maximum current

- 20 A

Measurable maximum current

- 40 A (1 A nominal) 200 A (5A nominal)

Maximum current (1 sec thermal)

- 500 A

Maximum current (1 cycle thermal)

- 1250 Ac (peak)

Frequency response (-3dB)

- 1500 Hz

Burden

- < 0.15 VA

Individual inputs

- Inter-circuit isolation of 2800Vdc for 1 min

Note: Unless otherwise specified, metering was done at 25°C.
Since 1959, Gentec is specialized in developing custom cutting edge technology electronic and electrical products. Our sustained effort to exceed utility requirements is one of the reasons why our ingenious and robust solutions are renowned around the world. Constantly look for getting ahead in the electrical industry trend.

Gentec is the perfect partner for you!